
LLNL-CONF-666137

Scaling of the Overlink Mesh
Interpolation Code on Sequoia

J. M. Grandy

January 13, 2015

Nuclear Explosives Code Development Conference
Los Alamos, NM, United States
October 20, 2014 through October 24, 2014

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Scaling of the Overlink Mesh Interpolation Code on
Sequoia

Jeffrey M. Grandy
B Division, Lawrence Livermore National Laboratory

Computational Mathematics 30

We demonstrate the scaling behavior of the mesh conversion code
Overlink on Sequoia, using MPI and OpenMP threads. We examine the
problem size and performance for various combinations of MPI and
threads, on one node of Blue Gene Q (the Sequoia architecture),
showing that OpenMP threads enable significantly larger numbers of
zones per domain. In addition, we demonstrate weak scaling up to one
trillion mesh zones on 65536 Sequoia nodes, which is two thirds of the
entire machine.

Scaling on one BGQ Node with MPI and Threads
We investigate scaling of the Overlink remap code on one node of Blue Gene Q, examining both
memory effects (using maximum problem size as a proxy) and CPU efficiency. Our timing
numbers for the single node investigation measure wall time and include reading and writing
from disk, and initialization times (which are small on small-scale single node runs). For this
study, all of our test meshes contain domains which are perfect Cartesian cubes (Overlink can
read and write block structured meshes, but these meshes are generalized to unstructured
hexahedral form prior to interpolation from the donor to the target). The target mesh is the same
number of zones and zone layout as the donor mesh, but the target mesh is slightly compressed in
each direction, so that its physical coordinates lie within the donor mesh.

The remapping is second order, with the interpolation in a donor zone given by

f (x⃗)= f 0+(∇ f)⋅(x⃗− x⃗c)

where x⃗c is the centroid of the donor zone, hence ensuring a conservative interpolation that
preserves the integral value of f over the volume of the zone, regardless of the value of the
gradient, excluding roundoff errors. The gradient of the field is constructed from the field values
at neighboring zones, generally requiring MPI communication to fill in a layer of halo zones, for
multidomain problems with multiple MPI ranks. Our single compute node tests have a single
domain of zones, but the multiple node simulations described in the section below (and most
Overlink runs) have multiple domains and utilize halo zones for the gradients. If Overlink is run
entirely in shared memory, the halo zones can be obtained directly from neighboring domains in
memory, and parallel efficiency may be obtained through OpenMP threads.

We first calibrate the job launch time by using small-scale runs. The srun command, which is the
program used to launch a parallel executable, has an overhead to initialize a run with MPI tasks
(even if there is only one MPI task, the code is compiled with the IBM MPI library and executed
with the srun launcher). We assume that the measured run time depends on N z , the total

1
NECDC 2014 Proceedings

number of zones, the number of MPI tasks M , and the number of OpenMP threads, T ,
with an additive term for the launch time L .

t̃w=g(N z , M , T)+L

tw=t̃w−L

From the calibration we obtain a minimum value of L⩾4 sec and subtract this from the
measured wall time to estimate the wall time spent in the Overlink application, tw .

We plot the application wall time, per zone, as a function of M , with the colored lines
representing a designated total number “virtual cores”, M∗T , and number of zones.

The mesh size of 125000 zones is the largest that would fit on 64 MPI tasks, since the entire
domain must be stored on 1/ M of the node memory to read in the donor and write the result,
and the machine architecture strictly partitions the memory among MPI tasks on the node. The
plot shows that, particularly with 2 to 16 MPI tasks on the node, the run time varies only slightly
when the total number of virtual cores is fixed; this means that utilizing additional CPUs or

2
NECDC 2014 Proceedings

1 2 4 8 16 32 64
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009
Wall Time per Zone for constant Virtual CPUs

125000zones_32cpu
125000zones_64cpu
1mzones_16cpu
1mzones_32cpu
1mzones_64cpu
2mzones_16cpu
2mzones_32cpu
2mzones_64cpu

MPI Tasks

W
al

l T
im

e
P

er
 Z

o
ne

hardware threads by using OpenMP to generate additional threads is roughly equivalent to using
MPI ranks to utilize the CPUs or hardware threads. However, as expected, using more virtual
CPUs improves the total run time (note, for example, the runs with 1 m. zones and 16 to 64
virtual CPUs), but, in this range of virtual CPUs, we are already using all 16 physical cores, and
the hardware threads, as might be expected, generate less than perfect improvement, as the run
with 32 virtual cores takes more than half the time of the run with 16 cores, etc. Also, there is
generally only a slight slowdown to run with one MPI rank, indicating that we can take full
advantage of the shared memory and obtain reasonable performance.

The run time, therefore, depends mostly only on the number of virtual cores,

tw≈f (N z , M∗T)

and perfect scaling would yield

tw /N z=t1/(M∗T)

where t1 is the time for one processing core, in serial, to process one donor zone. To examine
scaling, we plot the time per zone tw /N z as a function of problem size N z , using one to
64 virtual cores. For each point on the plot, we select the minimum time, for different values of

M , for fixed M∗T . For example, this entails selecting the minimum time on a solid
curve in the above graph, as a point on the following graph.

Degradation from scaling for large numbers of virtual cores are partly due to Amdahl's Law, since
with M∗T of 32 or 64, the serial portion of the run takes roughly half of the run time. For the

3
NECDC 2014 Proceedings

10000 100000 1000000 10000000
0.0001

0.0010

0.0100

Minimum Wall Time when Varying Number of MPI Ranks
While Holding MPI Ranks * Number of Threads fixed

01_VirtualCore

02_VirtualCores

04_VirtualCores

08_VirtualCores

16_VirtualCores

32_VirtualCores

64_VirtualCores

Number of Zones

W
al

l T
im

e
P

er
 Z

o
ne

8 million zone mesh, the serial run did not complete due to the 16 hour batch system time limit,
and the runs with 64 virtual cores did not complete, for any value of M , due to the memory
limit, possibly due to temporary objects that are allocated for each thread. As of this writing, we
have not performed a detailed study of the memory usage per thread and its effect on maximum
problem size. Another degradation is the upward trend of the time per zone as the problem size
increases (about 30% for 16 or 32 virtual cores, between 64000 and 8 m. zones). This might be
due to the memory cache.

Effect of Shared Memory on Memory Usage

Although the calculation work may be distributed among cores within a node, with a combination
MPI tasks and/or OpenMP threads, the number of MPI tasks on the node significantly restricts the
maximum domain size that can be used. This is because the memory is strictly partitioned among
the MPI tasks, as described above, and a domain must be read and written from a particular task.
For a single node of BGQ, the following plot illustrates a lower bound on the maximum problem
size (we tested problems in steps of approximately a factor of 2 in number of zones, so it is
possible that some of the symbols are “too small” by almost a factor of 2).

Our results show that, while similar performance may be achieved by using MPI or OpenMP
parallelism on the node (to get to a particular total parallelism of M∗T), the usage of
OpenMP parallelism (shared memory) provides significant benefit in the flexibility to use a

4
NECDC 2014 Proceedings

1 2 4 8 16 32 64
1

2

4

8

16

32

64

Maximum Number of Zones Executed Successfully (1 node of BGQ, 16gb)
Largest Value = 8 million zonesMPI Ranks

M
P

I
R

a
nk

s
*

N
um

b
e

r
o

f
T

hr
e

a
d

s

larger domain size. This can reduce total memory usage, for example, by reducing
proportionately the total number of halo zones by decreasing the surface area to volume ratio.
The ratio of halo zones to real zones decreases (slowly) as N z

−1/3 for a cubic mesh with N z

zones, so that for N z=103 zones, one layer of halo zones requires 73% of the number of real

zones, while the corresponding number for N z=1003 zones is 6.1%. An additional memory
benefit, for large meshes distributed across many compute nodes, is in gathering global data.
Since Overlink assumes no relationship between the donor and target mesh, any donor domain
can potentially intersect any target domain, causing potentially a non-local communications
pattern. By contrast, a differencing algorithm that couples only neighboring zones on a single
mesh, requires only communication with domains designated as “neighboring”, generally
producing a localized communication pattern, each MPI task exchanging data with a small
number of other tasks. Therefore, Overlink utilizes arrays enumerated over MPI tasks (or
domains), to determine the intersections between domains on the two meshes. An array of k
bytes per MPI task, M tasks per node, and N comp compute nodes consumes

k∗M∗N comp bytes per MPI rank (the total number of distributed tasks is M∗N comp).
With M tasks per node, the total memory usage of this array, on the compute node, is

nbytes=k∗M 2
∗N comp

so that, for example, running with “one task per physical core” (16 tasks per node) uses 256 times
the memory, that would be used with one MPI rank per node. Besides increased halo zones, this
produces additional strain on the memory resources of the compute node, for large distributed
meshes.

Weak Scaling Study on Sequoia

We have tested the memory usage and performance of Overlink by performing a weak scaling
study. We used distributed domain decomposed meshes, and to make more memory available for
large numbers of zones, we included only one zone centered field variable in the mesh. We also
opted for a modest domain size of 1 m. zones (a cubic mesh 100 zones on a side), in order to
provide some flexibility to approximately evenly distribute the same number of zones to each
compute node. In this scaling test, we ran Overlink with one MPI rank per node, and 64 OpenMP
threads, in order to reduce global memory as described above. Every node participated in reading
and writing to the Lustre parallel cluster file system, and we constrained the output to write at
most 1000 domain files per subdirectory, each file containing one domain. The target and donor
meshes are both the same number of zones and domain decomposition, with a slight shift in the
physical coordinates; all donor zones intersected at least one target zone.

During early 2013 we were able to fit 8 domains (8 m. zones) of the donor mesh (and their
corresponding target zones) per compute node. However, at that time we found that some arrays
of excessive length were allocated within each thread. After fixing this excessive memory usage,
we were able to fit at least 16 domains (16 m. zones) on each compute node. For this test, we
included only one field variable on the mesh, in order to fit a higher zone count into memory; in
the single node study, we used 17 field variables. In the plot below, we show the maximum, over
compute nodes, of CPU time (of one of the threads) , for the intersection calculation, and the total
wall clock time, for runs of 8 to 65536 compute nodes. The domains were automatically
distributed across the compute nodes, so that some nodes had 16 domains and other nodes had 15

5
NECDC 2014 Proceedings

domains (for example, the 1 b. zone calculation was 1000 domains on 64 nodes, putting 16
domains on 40 nodes and 15 domains on the other 24).

During our scaling study, conducted from April to June 2013, some of our runs failed due to
hangs while writing the result, although improvements in the system were made during the testing
process. For the largest run, which required a 65536 node partition (2/3 of the entire Sequoia
machine), we needed to run on the weekly “scaling test day” that was scheduled for Sequoia, and
thus a failure required a wait of a week or more for another attempt. We explored the possibility
of executing the next larger problem (2 t. zones) on the entire Sequoia machine, which would
have required at least 21 m. zones (21 domains) per compute node. Although we were able to fit
this many domains per node on a small number of compute nodes, we ran out of memory at a
smaller scale than the entire machine, perhaps due to the increase of memory usage with problem
size described above.

The plot above shows that the interpolation computation phase (the Thread_CPU symbols) is flat,
showing embarrassingly parallel scaling (no communication is done during the computation
phase), so this is evidence that the parallel work distribution algorithm is working properly. The
wall time shows evidence of deviation from scaling, at the level of 500b. zones and 1 t. zones;
this might be an effect of the increased time to process arrays over domains, as described earlier.
Each compute node does the same amount of disk input/output on all of the runs, since this is a
weak scaling test. If the deviation from scaling were to increase, it might have also stopped an
attempt to run the next larger problem on the full machine, due to the four hour time limit.

6
NECDC 2014 Proceedings

125m250m500m 1b 2b 4b 8b 16b 64b 250b 500b 1t
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Wall Time and Thread Computat ion CPU Time

Wall_Time

Thread_CPU

Number of Zones

T
im

e
(s

ec
)

References
1. Grandy, J. 2012. Overlink Users Guide, Lawrence Livermore National Laboratory

report LLNL-SM-531271.

7
NECDC 2014 Proceedings

